Calculate velocities and relative stride lengths for tracks
Source:R/velocity_track.R
velocity_track.Rd
velocity_track()
calculates the velocities and relative stride lengths for each step in a series of tracks, based on the step length, height at the hip, and gravity acceleration.
Arguments
- data
A
track
R object, which is a list consisting of two elements:Trajectories
: A list of interpolated trajectories, where each trajectory is a series of midpoints between consecutive footprints.Footprints
: A list of data frames containing footprint coordinates, metadata (e.g., image reference, ID), and a marker indicating whether the footprint is actual or inferred.
- H
A numeric vector representing the height at the hip (in meters) for each track maker. The length of this vector should match the number of tracks in the data.
- G
Gravity acceleration (in meters per second squared). Default is
9.8
.- method
A character vector specifying the method to calculate velocities for each track. Method
"A"
follows the approach from Alexander (1976), while method"B"
is based on Ruiz & Torices (2013). IfNULL
, method"A"
will be used for all tracks.
Value
A track velocity
R object consisting of a list of lists, where each sublist contains the computed parameters for a corresponding track.
The parameters included are:
Step_velocities
: A vector of velocities for each step in the track (in meters per second).Mean_velocity
: The mean velocity across all steps in the track (in meters per second).Standard_deviation_velocity
: The standard deviation of velocities across all steps in the track (in meters per second).Maximum_velocity
: The maximum velocity among all steps in the track (in meters per second).Minimum_velocity
: The minimum velocity among all steps in the track (in meters per second).Step_relative_stride
: A vector of relative stride lengths for each step in the track (dimensionless).Mean_relative_stride
: The mean relative stride length across all steps in the track (dimensionless).Standard_deviation_relative_stride
: The standard deviation of relative stride lengths across all steps in the track (dimensionless).Maximum_relative_stride
: The maximum relative stride length among all steps in the track (dimensionless).Minimum_relative_stride
: The minimum relative stride length among all steps in the track (dimensionless).
Details
The velocity_track()
function calculates velocities using two methods:
Method A: Based on Alexander (1976), with the formula: $$v = 0.25 \cdot \sqrt{G} \cdot S^{1.67} \cdot H^{-1.17}$$
v: Velocity of the track-maker (in meters per second).
G: Acceleration due to gravity (in meters per second squared), typically \(9.81\ \text{m/s}^2\).
S: Stride length, which is the distance between consecutive footprints (in meters).
H: Height at the hip of the track-maker (in meters).
The coefficients \(0.25\), \(1.67\), and \(-1.17\) are derived from empirical studies. These coefficients adjust the formula to account for different animal sizes and gaits.
This method applies to a wide range of terrestrial vertebrates and is used to estimate velocity across different gaits.
Method B: Based on Ruiz & Torices (2013), with the formula: $$v = 0.226 \cdot \sqrt{G} \cdot S^{1.67} \cdot H^{-1.17}$$
v: Velocity of the track-maker (in meters per second).
G: Acceleration due to gravity (in meters per second squared), typically \(9.81\ \text{m/s}^2\).
S: Stride length (in meters).
H: Height at the hip of the track-maker (in meters).
The oefficient \(0.226\) in method B is a refinement based on updated data for bipedal locomotion.
Based on Thulborn & Wade (1984), it is possible to identify the gaits of track-makers on the basis of relative stride length, as follows:
Walk: \(A/H < 2.0\); locomotor performance equivalent to walking in mammals.
Trot: \(2.0 \leq A/H \leq 2.9\); locomotor performance equivalent to trotting or racking in mammals.
Run: \(A/H > 2.9\); locomotor performance equivalent to cantering, galloping, or sprinting in mammals.
References
Alexander, R. M. (1976). Estimates of speeds of dinosaurs. Nature, 261(5556), 129-130.
Ruiz, J., & Torices, A. (2013). Humans running at stadiums and beaches and the accuracy of speed estimations from fossil trackways. Ichnos, 20(1), 31-35.
Thulborn, R. A., & Wade, M. (1984). Dinosaur trackways in the Winton Formation (mid-Cretaceous) of Queensland. Memoirs of the Queensland Museum, 21(2), 413-517.
Author
Humberto G. Ferrón
humberto.ferron@uv.es
Macroevolution and Functional Morphology Research Group (www.macrofun.es)
Cavanilles Institute of Biodiversity and Evolutionary Biology
Calle Catedrático José Beltrán Martínez, nº 2
46980 Paterna - Valencia - Spain
Phone: +34 (9635) 44477
Examples
# Example 1: Calculate velocities for the MountTom dataset using default settings.
# H_mounttom contains hip heights for each track in the MountTom dataset.
# The function will use the default method "A" for all tracks.
# Hip heights are inferred as four times the footprint length, following Alexander's approach.
H_mounttom <- c(
1.380, 1.404, 1.320, 1.736, 1.364, 1.432, 1.508, 1.768, 1.600,
1.848, 1.532, 1.532, 0.760, 1.532, 1.688, 1.620, 0.636, 1.784, 1.676, 1.872,
1.648, 1.760, 1.612
)
velocity_track(MountTom, H = H_mounttom)
#> $Track_01
#> $Track_01$Step_velocities
#> [1] 1.917671 1.699122 1.724574 1.690528 1.646310 1.521394 1.326607 1.634729
#>
#> $Track_01$Mean_velocity
#> [1] 1.645117
#>
#> $Track_01$Standard_deviation_velocity
#> [1] 0.17006
#>
#> $Track_01$Maximum_velocity
#> [1] 1.917671
#>
#> $Track_01$Minimum_velocity
#> [1] 1.326607
#>
#> $Track_01$Step_relative_stride
#> [1] 1.553054 1.444507 1.457425 1.440128 1.417452 1.352034 1.245544 1.411473
#>
#> $Track_01$Mean_relative_stride
#> [1] 1.415202
#>
#> $Track_01$Standard_deviation_relative_stride
#> [1] 0.08868808
#>
#> $Track_01$Maximum_relative_stride
#> [1] 1.553054
#>
#> $Track_01$Minimum_relative_stride
#> [1] 1.245544
#>
#>
#> $Track_02
#> $Track_02$Step_velocities
#> [1] 1.446657 1.678316 1.833994 1.901630 2.320863 1.891043 1.662219 1.903494
#>
#> $Track_02$Mean_velocity
#> [1] 1.829777
#>
#> $Track_02$Standard_deviation_velocity
#> [1] 0.2544829
#>
#> $Track_02$Maximum_velocity
#> [1] 2.320863
#>
#> $Track_02$Minimum_velocity
#> [1] 1.446657
#>
#> $Track_02$Step_relative_stride
#> [1] 1.305107 1.426506 1.504327 1.537305 1.732091 1.532175 1.418298 1.538208
#>
#> $Track_02$Mean_relative_stride
#> [1] 1.499252
#>
#> $Track_02$Standard_deviation_relative_stride
#> [1] 0.1241122
#>
#> $Track_02$Maximum_relative_stride
#> [1] 1.732091
#>
#> $Track_02$Minimum_relative_stride
#> [1] 1.305107
#>
#>
#> $Track_03
#> $Track_03$Step_velocities
#> [1] 2.434079 2.860861 3.171859 2.291902
#>
#> $Track_03$Mean_velocity
#> [1] 2.689676
#>
#> $Track_03$Standard_deviation_velocity
#> [1] 0.4022265
#>
#> $Track_03$Maximum_velocity
#> [1] 3.171859
#>
#> $Track_03$Minimum_velocity
#> [1] 2.291902
#>
#> $Track_03$Step_relative_stride
#> [1] 1.815427 1.999825 2.127300 1.751165
#>
#> $Track_03$Mean_relative_stride
#> [1] 1.923429
#>
#> $Track_03$Standard_deviation_relative_stride
#> [1] 0.1719874
#>
#> $Track_03$Maximum_relative_stride
#> [1] 2.1273
#>
#> $Track_03$Minimum_relative_stride
#> [1] 1.751165
#>
#>
#> $Track_04
#> $Track_04$Step_velocities
#> [1] 1.830533 1.623483 1.409200 1.532089
#>
#> $Track_04$Mean_velocity
#> [1] 1.598826
#>
#> $Track_04$Standard_deviation_velocity
#> [1] 0.1776776
#>
#> $Track_04$Maximum_velocity
#> [1] 1.830533
#>
#> $Track_04$Minimum_velocity
#> [1] 1.4092
#>
#> $Track_04$Step_relative_stride
#> [1] 1.410104 1.312308 1.205659 1.267558
#>
#> $Track_04$Mean_relative_stride
#> [1] 1.298907
#>
#> $Track_04$Standard_deviation_relative_stride
#> [1] 0.08606683
#>
#> $Track_04$Maximum_relative_stride
#> [1] 1.410104
#>
#> $Track_04$Minimum_relative_stride
#> [1] 1.205659
#>
#>
#> $Track_05
#> $Track_05$Step_velocities
#> [1] 2.175188
#>
#> $Track_05$Mean_velocity
#> [1] 2.175188
#>
#> $Track_05$Standard_deviation_velocity
#> [1] NA
#>
#> $Track_05$Maximum_velocity
#> [1] 2.175188
#>
#> $Track_05$Minimum_velocity
#> [1] 2.175188
#>
#> $Track_05$Step_relative_stride
#> [1] 1.680626
#>
#> $Track_05$Mean_relative_stride
#> [1] 1.680626
#>
#> $Track_05$Standard_deviation_relative_stride
#> [1] NA
#>
#> $Track_05$Maximum_relative_stride
#> [1] 1.680626
#>
#> $Track_05$Minimum_relative_stride
#> [1] 1.680626
#>
#>
#> $Track_06
#> $Track_06$Step_velocities
#> [1] 1.868553 1.995720
#>
#> $Track_06$Mean_velocity
#> [1] 1.932136
#>
#> $Track_06$Standard_deviation_velocity
#> [1] 0.08992089
#>
#> $Track_06$Maximum_velocity
#> [1] 1.99572
#>
#> $Track_06$Minimum_velocity
#> [1] 1.868553
#>
#> $Track_06$Step_relative_stride
#> [1] 1.512270 1.573083
#>
#> $Track_06$Mean_relative_stride
#> [1] 1.542676
#>
#> $Track_06$Standard_deviation_relative_stride
#> [1] 0.04300131
#>
#> $Track_06$Maximum_relative_stride
#> [1] 1.573083
#>
#> $Track_06$Minimum_relative_stride
#> [1] 1.51227
#>
#>
#> $Track_07
#> $Track_07$Step_velocities
#> [1] 1.1580528 0.8799351 1.1565610 1.5947244 1.6218920 1.3654251
#>
#> $Track_07$Mean_velocity
#> [1] 1.296098
#>
#> $Track_07$Standard_deviation_velocity
#> [1] 0.2869998
#>
#> $Track_07$Maximum_velocity
#> [1] 1.621892
#>
#> $Track_07$Minimum_velocity
#> [1] 0.8799351
#>
#> $Track_07$Step_relative_stride
#> [1] 1.1181185 0.9485583 1.1172557 1.3542404 1.3680084 1.2340304
#>
#> $Track_07$Mean_relative_stride
#> [1] 1.190035
#>
#> $Track_07$Standard_deviation_relative_stride
#> [1] 0.1608436
#>
#> $Track_07$Maximum_relative_stride
#> [1] 1.368008
#>
#> $Track_07$Minimum_relative_stride
#> [1] 0.9485583
#>
#>
#> $Track_08
#> $Track_08$Step_velocities
#> [1] 1.840475 1.822117 1.615424 1.429871 1.893798
#>
#> $Track_08$Mean_velocity
#> [1] 1.720337
#>
#> $Track_08$Standard_deviation_velocity
#> [1] 0.1938159
#>
#> $Track_08$Maximum_velocity
#> [1] 1.893798
#>
#> $Track_08$Minimum_velocity
#> [1] 1.429871
#>
#> $Track_08$Step_relative_stride
#> [1] 1.406970 1.398550 1.301268 1.209585 1.431239
#>
#> $Track_08$Mean_relative_stride
#> [1] 1.349522
#>
#> $Track_08$Standard_deviation_relative_stride
#> [1] 0.09259133
#>
#> $Track_08$Maximum_relative_stride
#> [1] 1.431239
#>
#> $Track_08$Minimum_relative_stride
#> [1] 1.209585
#>
#>
#> $Track_09
#> $Track_09$Step_velocities
#> [1] 2.836024 2.628135 2.426088 1.824772
#>
#> $Track_09$Mean_velocity
#> [1] 2.428755
#>
#> $Track_09$Standard_deviation_velocity
#> [1] 0.4360513
#>
#> $Track_09$Maximum_velocity
#> [1] 2.836024
#>
#> $Track_09$Minimum_velocity
#> [1] 1.824772
#>
#> $Track_09$Step_relative_stride
#> [1] 1.878065 1.794374 1.710448 1.442246
#>
#> $Track_09$Mean_relative_stride
#> [1] 1.706283
#>
#> $Track_09$Standard_deviation_relative_stride
#> [1] 0.188858
#>
#> $Track_09$Maximum_relative_stride
#> [1] 1.878065
#>
#> $Track_09$Minimum_relative_stride
#> [1] 1.442246
#>
#>
#> $Track_10
#> $Track_10$Step_velocities
#> [1] 1.531647
#>
#> $Track_10$Mean_velocity
#> [1] 1.531647
#>
#> $Track_10$Standard_deviation_velocity
#> [1] NA
#>
#> $Track_10$Maximum_velocity
#> [1] 1.531647
#>
#> $Track_10$Minimum_velocity
#> [1] 1.531647
#>
#> $Track_10$Step_relative_stride
#> [1] 1.243837
#>
#> $Track_10$Mean_relative_stride
#> [1] 1.243837
#>
#> $Track_10$Standard_deviation_relative_stride
#> [1] NA
#>
#> $Track_10$Maximum_relative_stride
#> [1] 1.243837
#>
#> $Track_10$Minimum_relative_stride
#> [1] 1.243837
#>
#>
#> $Track_11
#> $Track_11$Step_velocities
#> [1] 2.076045
#>
#> $Track_11$Mean_velocity
#> [1] 2.076045
#>
#> $Track_11$Standard_deviation_velocity
#> [1] NA
#>
#> $Track_11$Maximum_velocity
#> [1] 2.076045
#>
#> $Track_11$Minimum_velocity
#> [1] 2.076045
#>
#> $Track_11$Step_relative_stride
#> [1] 1.578469
#>
#> $Track_11$Mean_relative_stride
#> [1] 1.578469
#>
#> $Track_11$Standard_deviation_relative_stride
#> [1] NA
#>
#> $Track_11$Maximum_relative_stride
#> [1] 1.578469
#>
#> $Track_11$Minimum_relative_stride
#> [1] 1.578469
#>
#>
#> $Track_12
#> $Track_12$Step_velocities
#> [1] 2.055415
#>
#> $Track_12$Mean_velocity
#> [1] 2.055415
#>
#> $Track_12$Standard_deviation_velocity
#> [1] NA
#>
#> $Track_12$Maximum_velocity
#> [1] 2.055415
#>
#> $Track_12$Minimum_velocity
#> [1] 2.055415
#>
#> $Track_12$Step_relative_stride
#> [1] 1.569058
#>
#> $Track_12$Mean_relative_stride
#> [1] 1.569058
#>
#> $Track_12$Standard_deviation_relative_stride
#> [1] NA
#>
#> $Track_12$Maximum_relative_stride
#> [1] 1.569058
#>
#> $Track_12$Minimum_relative_stride
#> [1] 1.569058
#>
#>
#> $Track_13
#> $Track_13$Step_velocities
#> [1] 1.0479855 0.9131596 0.7996623 0.9715874
#>
#> $Track_13$Mean_velocity
#> [1] 0.9330987
#>
#> $Track_13$Standard_deviation_velocity
#> [1] 0.1046951
#>
#> $Track_13$Maximum_velocity
#> [1] 1.047985
#>
#> $Track_13$Minimum_velocity
#> [1] 0.7996623
#>
#> $Track_13$Step_relative_stride
#> [1] 1.293046 1.190695 1.099729 1.235746
#>
#> $Track_13$Mean_relative_stride
#> [1] 1.204804
#>
#> $Track_13$Standard_deviation_relative_stride
#> [1] 0.08161704
#>
#> $Track_13$Maximum_relative_stride
#> [1] 1.293046
#>
#> $Track_13$Minimum_relative_stride
#> [1] 1.099729
#>
#>
#> $Track_14
#> $Track_14$Step_velocities
#> [1] 1.642322 1.384645
#>
#> $Track_14$Mean_velocity
#> [1] 1.513483
#>
#> $Track_14$Standard_deviation_velocity
#> [1] 0.1822052
#>
#> $Track_14$Maximum_velocity
#> [1] 1.642322
#>
#> $Track_14$Minimum_velocity
#> [1] 1.384645
#>
#> $Track_14$Step_relative_stride
#> [1] 1.371800 1.238534
#>
#> $Track_14$Mean_relative_stride
#> [1] 1.305167
#>
#> $Track_14$Standard_deviation_relative_stride
#> [1] 0.09423395
#>
#> $Track_14$Maximum_relative_stride
#> [1] 1.3718
#>
#> $Track_14$Minimum_relative_stride
#> [1] 1.238534
#>
#>
#> $Track_15
#> $Track_15$Step_velocities
#> [1] 1.481571 1.819262 1.714949 1.727258
#>
#> $Track_15$Mean_velocity
#> [1] 1.68576
#>
#> $Track_15$Standard_deviation_velocity
#> [1] 0.1438632
#>
#> $Track_15$Maximum_velocity
#> [1] 1.819262
#>
#> $Track_15$Minimum_velocity
#> [1] 1.481571
#>
#> $Track_15$Step_relative_stride
#> [1] 1.252836 1.416743 1.367525 1.373394
#>
#> $Track_15$Mean_relative_stride
#> [1] 1.352624
#>
#> $Track_15$Standard_deviation_relative_stride
#> [1] 0.0700531
#>
#> $Track_15$Maximum_relative_stride
#> [1] 1.416743
#>
#> $Track_15$Minimum_relative_stride
#> [1] 1.252836
#>
#>
#> $Track_16
#> $Track_16$Step_velocities
#> [1] 1.204506 1.319338 1.530753 1.656302 1.486676 1.558870 1.438280
#>
#> $Track_16$Mean_velocity
#> [1] 1.456389
#>
#> $Track_16$Standard_deviation_velocity
#> [1] 0.1524638
#>
#> $Track_16$Maximum_velocity
#> [1] 1.656302
#>
#> $Track_16$Minimum_velocity
#> [1] 1.204506
#>
#> $Track_16$Step_relative_stride
#> [1] 1.120470 1.183262 1.293401 1.355917 1.270970 1.307575 1.246030
#>
#> $Track_16$Mean_relative_stride
#> [1] 1.253947
#>
#> $Track_16$Standard_deviation_relative_stride
#> [1] 0.07957735
#>
#> $Track_16$Maximum_relative_stride
#> [1] 1.355917
#>
#> $Track_16$Minimum_relative_stride
#> [1] 1.12047
#>
#>
#> $Track_17
#> $Track_17$Step_velocities
#> [1] 0.5915414
#>
#> $Track_17$Mean_velocity
#> [1] 0.5915414
#>
#> $Track_17$Standard_deviation_velocity
#> [1] NA
#>
#> $Track_17$Maximum_velocity
#> [1] 0.5915414
#>
#> $Track_17$Minimum_velocity
#> [1] 0.5915414
#>
#> $Track_17$Step_relative_stride
#> [1] 0.9683894
#>
#> $Track_17$Mean_relative_stride
#> [1] 0.9683894
#>
#> $Track_17$Standard_deviation_relative_stride
#> [1] NA
#>
#> $Track_17$Maximum_relative_stride
#> [1] 0.9683894
#>
#> $Track_17$Minimum_relative_stride
#> [1] 0.9683894
#>
#>
#> $Track_18
#> $Track_18$Step_velocities
#> [1] 1.855606 1.676314 1.873988 1.404891
#>
#> $Track_18$Mean_velocity
#> [1] 1.7027
#>
#> $Track_18$Standard_deviation_velocity
#> [1] 0.2176438
#>
#> $Track_18$Maximum_velocity
#> [1] 1.873988
#>
#> $Track_18$Minimum_velocity
#> [1] 1.404891
#>
#> $Track_18$Step_relative_stride
#> [1] 1.410077 1.326836 1.418425 1.193662
#>
#> $Track_18$Mean_relative_stride
#> [1] 1.33725
#>
#> $Track_18$Standard_deviation_relative_stride
#> [1] 0.1042735
#>
#> $Track_18$Maximum_relative_stride
#> [1] 1.418425
#>
#> $Track_18$Minimum_relative_stride
#> [1] 1.193662
#>
#>
#> $Track_19
#> $Track_19$Step_velocities
#> [1] 2.650903
#>
#> $Track_19$Mean_velocity
#> [1] 2.650903
#>
#> $Track_19$Standard_deviation_velocity
#> [1] NA
#>
#> $Track_19$Maximum_velocity
#> [1] 2.650903
#>
#> $Track_19$Minimum_velocity
#> [1] 2.650903
#>
#> $Track_19$Step_relative_stride
#> [1] 1.778779
#>
#> $Track_19$Mean_relative_stride
#> [1] 1.778779
#>
#> $Track_19$Standard_deviation_relative_stride
#> [1] NA
#>
#> $Track_19$Maximum_relative_stride
#> [1] 1.778779
#>
#> $Track_19$Minimum_relative_stride
#> [1] 1.778779
#>
#>
#> $Track_20
#> $Track_20$Step_velocities
#> [1] 1.631206 1.396409
#>
#> $Track_20$Mean_velocity
#> [1] 1.513807
#>
#> $Track_20$Standard_deviation_velocity
#> [1] 0.1660266
#>
#> $Track_20$Maximum_velocity
#> [1] 1.631206
#>
#> $Track_20$Minimum_velocity
#> [1] 1.396409
#>
#> $Track_20$Step_relative_stride
#> [1] 1.286657 1.172319
#>
#> $Track_20$Mean_relative_stride
#> [1] 1.229488
#>
#> $Track_20$Standard_deviation_relative_stride
#> [1] 0.08084897
#>
#> $Track_20$Maximum_relative_stride
#> [1] 1.286657
#>
#> $Track_20$Minimum_relative_stride
#> [1] 1.172319
#>
#>
#> $Track_21
#> $Track_21$Step_velocities
#> [1] 1.719009 1.860508
#>
#> $Track_21$Mean_velocity
#> [1] 1.789759
#>
#> $Track_21$Standard_deviation_velocity
#> [1] 0.1000548
#>
#> $Track_21$Maximum_velocity
#> [1] 1.860508
#>
#> $Track_21$Minimum_velocity
#> [1] 1.719009
#>
#> $Track_21$Step_relative_stride
#> [1] 1.379331 1.446237
#>
#> $Track_21$Mean_relative_stride
#> [1] 1.412784
#>
#> $Track_21$Standard_deviation_relative_stride
#> [1] 0.04730944
#>
#> $Track_21$Maximum_relative_stride
#> [1] 1.446237
#>
#> $Track_21$Minimum_relative_stride
#> [1] 1.379331
#>
#>
#> $Track_22
#> $Track_22$Step_velocities
#> [1] 0.917559 1.250737
#>
#> $Track_22$Mean_velocity
#> [1] 1.084148
#>
#> $Track_22$Standard_deviation_velocity
#> [1] 0.2355923
#>
#> $Track_22$Maximum_velocity
#> [1] 1.250737
#>
#> $Track_22$Minimum_velocity
#> [1] 0.917559
#>
#> $Track_22$Step_relative_stride
#> [1] 0.9286649 1.1179364
#>
#> $Track_22$Mean_relative_stride
#> [1] 1.023301
#>
#> $Track_22$Standard_deviation_relative_stride
#> [1] 0.1338351
#>
#> $Track_22$Maximum_relative_stride
#> [1] 1.117936
#>
#> $Track_22$Minimum_relative_stride
#> [1] 0.9286649
#>
#>
#> $Track_23
#> $Track_23$Step_velocities
#> [1] 3.753784
#>
#> $Track_23$Mean_velocity
#> [1] 3.753784
#>
#> $Track_23$Standard_deviation_velocity
#> [1] NA
#>
#> $Track_23$Maximum_velocity
#> [1] 3.753784
#>
#> $Track_23$Minimum_velocity
#> [1] 3.753784
#>
#> $Track_23$Step_relative_stride
#> [1] 2.216404
#>
#> $Track_23$Mean_relative_stride
#> [1] 2.216404
#>
#> $Track_23$Standard_deviation_relative_stride
#> [1] NA
#>
#> $Track_23$Maximum_relative_stride
#> [1] 2.216404
#>
#> $Track_23$Minimum_relative_stride
#> [1] 2.216404
#>
#>
# Example 2: Calculate velocities for the PaluxyRiver dataset using default settings.
# H_paluxyriver contains hip heights for each track in the PaluxyRiver dataset.
# The function will use the default method "A" for all tracks.
# Hip heights are inferred as four times the footprint length, following Alexander's approach.
H_paluxyriver <- c(3.472, 2.200)
velocity_track(PaluxyRiver, H = H_paluxyriver)
#> $Track_1
#> $Track_1$Step_velocities
#> [1] 0.2884087 0.2667234 0.2246319 0.2038125 0.2297207 0.2673225 0.2495612
#> [8] 0.2303131 0.2352243 0.1496251 0.1616271 0.2372131 0.2426553 0.2254857
#> [15] 0.2041018 0.2211659 0.2609607 0.2515620 0.3030204 0.2519311 0.2015630
#> [22] 0.1627231 0.2052861 0.2788176 0.2525451 0.2455988 0.2475302 0.3025814
#>
#> $Track_1$Mean_velocity
#> [1] 0.2357754
#>
#> $Track_1$Standard_deviation_velocity
#> [1] 0.03865919
#>
#> $Track_1$Maximum_velocity
#> [1] 0.3030204
#>
#> $Track_1$Minimum_velocity
#> [1] 0.1496251
#>
#> $Track_1$Step_relative_stride
#> [1] 0.3789154 0.3615884 0.3262496 0.3077913 0.3306554 0.3620745 0.3474711
#> [8] 0.3311657 0.3353764 0.2557886 0.2678840 0.3370715 0.3416810 0.3269916
#> [15] 0.3080528 0.3232259 0.3568899 0.3491365 0.3902964 0.3494432 0.3057525
#> [22] 0.2689704 0.3091219 0.3713188 0.3499529 0.3441569 0.3457750 0.3899578
#>
#> $Track_1$Mean_relative_stride
#> [1] 0.3347413
#>
#> $Track_1$Standard_deviation_relative_stride
#> [1] 0.03373255
#>
#> $Track_1$Maximum_relative_stride
#> [1] 0.3902964
#>
#> $Track_1$Minimum_relative_stride
#> [1] 0.2557886
#>
#>
#> $Track_2
#> $Track_2$Step_velocities
#> [1] 0.4217631 0.4424676 0.5313636 0.5147757 0.5386046 0.5371984 0.4793255
#> [8] 0.3964918 0.3818617 0.4191057 0.4207669 0.3792643 0.5615777 0.7805553
#> [15] 0.5455458 0.3713092 0.3961137 0.4110622 0.5113603 0.5568550 0.6203647
#> [22] 0.6723679 0.7106800
#>
#> $Track_2$Mean_velocity
#> [1] 0.5043818
#>
#> $Track_2$Standard_deviation_velocity
#> [1] 0.11228
#>
#> $Track_2$Maximum_velocity
#> [1] 0.7805553
#>
#> $Track_2$Minimum_velocity
#> [1] 0.3713092
#>
#> $Track_2$Step_relative_stride
#> [1] 0.5453924 0.5612701 0.6263007 0.6145187 0.6313974 0.6304098 0.5888162
#> [8] 0.5255821 0.5138819 0.5433321 0.5446207 0.5117860 0.6473884 0.7884788
#> [15] 0.6362574 0.5053306 0.5252820 0.5370638 0.6120740 0.6441228 0.6871563
#> [22] 0.7210902 0.7454200
#>
#> $Track_2$Mean_relative_stride
#> [1] 0.6037814
#>
#> $Track_2$Standard_deviation_relative_stride
#> [1] 0.0789691
#>
#> $Track_2$Maximum_relative_stride
#> [1] 0.7884788
#>
#> $Track_2$Minimum_relative_stride
#> [1] 0.5053306
#>
#>
# Example 3: Calculate velocities for the PaluxyRiver dataset using different methods
# for velocity calculation. Method "A" is used for sauropods, which is more
# appropriate for quadrupedal dinosaurs. Method "B" is used for theropods, which
# is more appropriate for bipedal dinosaurs. Hip heights are inferred as four times
# the footprint length, following Alexander's approach.
H_paluxyriver <- c(3.472, 2.200)
Method_paluxyriver <- c("A", "B")
velocity_track(PaluxyRiver, H = H_paluxyriver, method = Method_paluxyriver)
#> $Track_1
#> $Track_1$Step_velocities
#> [1] 0.2884087 0.2667234 0.2246319 0.2038125 0.2297207 0.2673225 0.2495612
#> [8] 0.2303131 0.2352243 0.1496251 0.1616271 0.2372131 0.2426553 0.2254857
#> [15] 0.2041018 0.2211659 0.2609607 0.2515620 0.3030204 0.2519311 0.2015630
#> [22] 0.1627231 0.2052861 0.2788176 0.2525451 0.2455988 0.2475302 0.3025814
#>
#> $Track_1$Mean_velocity
#> [1] 0.2357754
#>
#> $Track_1$Standard_deviation_velocity
#> [1] 0.03865919
#>
#> $Track_1$Maximum_velocity
#> [1] 0.3030204
#>
#> $Track_1$Minimum_velocity
#> [1] 0.1496251
#>
#> $Track_1$Step_relative_stride
#> [1] 0.3789154 0.3615884 0.3262496 0.3077913 0.3306554 0.3620745 0.3474711
#> [8] 0.3311657 0.3353764 0.2557886 0.2678840 0.3370715 0.3416810 0.3269916
#> [15] 0.3080528 0.3232259 0.3568899 0.3491365 0.3902964 0.3494432 0.3057525
#> [22] 0.2689704 0.3091219 0.3713188 0.3499529 0.3441569 0.3457750 0.3899578
#>
#> $Track_1$Mean_relative_stride
#> [1] 0.3347413
#>
#> $Track_1$Standard_deviation_relative_stride
#> [1] 0.03373255
#>
#> $Track_1$Maximum_relative_stride
#> [1] 0.3902964
#>
#> $Track_1$Minimum_relative_stride
#> [1] 0.2557886
#>
#>
#> $Track_2
#> $Track_2$Step_velocities
#> [1] 0.3812738 0.3999907 0.4803527 0.4653572 0.4868985 0.4856273 0.4333103
#> [8] 0.3584286 0.3452030 0.3788715 0.3803733 0.3428550 0.5076662 0.7056220
#> [15] 0.4931734 0.3356635 0.3580868 0.3716003 0.4622697 0.5033969 0.5608097
#> [22] 0.6078206 0.6424547
#>
#> $Track_2$Mean_velocity
#> [1] 0.4559611
#>
#> $Track_2$Standard_deviation_velocity
#> [1] 0.1015011
#>
#> $Track_2$Maximum_velocity
#> [1] 0.705622
#>
#> $Track_2$Minimum_velocity
#> [1] 0.3356635
#>
#> $Track_2$Step_relative_stride
#> [1] 0.5453924 0.5612701 0.6263007 0.6145187 0.6313974 0.6304098 0.5888162
#> [8] 0.5255821 0.5138819 0.5433321 0.5446207 0.5117860 0.6473884 0.7884788
#> [15] 0.6362574 0.5053306 0.5252820 0.5370638 0.6120740 0.6441228 0.6871563
#> [22] 0.7210902 0.7454200
#>
#> $Track_2$Mean_relative_stride
#> [1] 0.6037814
#>
#> $Track_2$Standard_deviation_relative_stride
#> [1] 0.0789691
#>
#> $Track_2$Maximum_relative_stride
#> [1] 0.7884788
#>
#> $Track_2$Minimum_relative_stride
#> [1] 0.5053306
#>
#>